MIET 2136 Mechanical Design 1 Assignment 1 SEMESTER II 2024 PULLEY REDUCTION DRIVE AND GEARBOX DESIGN

Alan Wang s4000492

The general concept and layout of a combination: belt driven torque increasing system and torque increasing gearbox has progressed to the stage where the detailed design can now be undertaken. The general system layout is as follows:

The detail design will be undertaken in three phases, firstly the belt drive system, secondly shaft drive system, and thirdly the gearbox system.

An alternating current (A/C) electric motor will be selected for your system. This motor will drive a pulley and belt system, which will alter the power transmission characteristics. The power will then be transmitted through a shaft, mounted to bearings to allow for rotational freedom while constraining the shaft radially. This shaft will then drive a one stage gear reduction.

The electric motor is a 3-phase, 4-pole (per phase) induction motor supplied with 400V and 50 Hz AC. A motor from the WEG catalogue such that the system can transmit a power of at least 12kW is selected.

W21-Cast iron frame motor $GB3^{(1)} - IF2^{(2)}$

For my student number $X = 2$, the required power is **12kW**, and the SMALLEST motor that can meet the required transmitted power requirement has a rated speed of **1470 RPM**.

Machine class

Using the examples of driven machine type from Table A1 of AS2784, **Class 2** is appropriate for a belt conveyor that is not uniformly loaded.

Service factor

The motor system runs for 20 hours per day. Referring to Appendix A1 with regards to design power,For soft start the service factor is 1.3, meaning my design power is **19.5 kW.**

TABLE A1 **SERVICE FACTORS FOR BELT DRIVES**

FIGURE A1 SELECTION OF WEDGE BELT CROSS-SECTION

Wedge belt selection

Using Figure A1 from AS2784, **SPA** is selected as an appropriate Wedge Belt cross-section size for my design power and shaft speed.

FIGURE A1 SELECTION OF WEDGE BELT CROSS-SECTION

Pulley Selection

The pulley selection should allow the main shaft to run as close as possible to 460 rpm when the motor is running at its rated speed.

Noting that the larger pulley OD must be less than 800 mm, select appropriate pitch diameters for the small and large pulleys from Table 9 of AS2784.

Determine all potential pulley combinations which provide an output rpm with \pm 5% error. I have selected a small pulley pitch diameter of **125 mm,** and a large pulley pitch diameter of **400 mm**, meaning the error in shaft speed (measured in rpm), is **0.625**RPM.

Belt length

AS2784 Table 4 describes commonly available belt lengths for different cross-section sizes, and sections A3 and A4 provide formulae for the calculation of belt length and centre distance, respectively.

The centre distance may not exceed 1000 mm and must be greater than the difference between the two pulley pitch diameters (i.e. $(D-d) < C$)

I have selected a small pulley pitch diameter of 125 mm and a large pulley pitch diameter of 400 mm. For this pulley combination, the smallest belt pitch length I can use is **1600 mm** and the longest belt pitch length I can use is **2800 mm**.

Belt power rating

Using AS2784 power rating tables (Table A2 for SPZ belts, Table A3 for SPA belts and Table A4 for SPB belts) define the Power Rating of a single belt for each of the potential pulley combinations found in question 5

For my belt system I have selected a small pulley pitch diameter of 125 mm, and the small pulley shaft speed is 1470 RPM, therefore the Power Rating per belt (in kW) from AS2784 is **4.315 kW**.

Power increment per belt

Using AS2784 power rating tables (Table A2 for SPZ belts, Table A3 for SPA belts andTable A4 for SPB belts) I have selected a small pulley pitch diameter of 125 mm, the small pulley shaft speed is 1470 RPM and the **speed ratio is 3.2,** therefore the Power Increment per belt is **0.57 kW**.

 \mathbf{TARI} \mathbf{R} $\mathbf{A3}$ (continued)

Power correction for belt pitch length

Using AS2784 Table A13 determine the Power Correction Factor for Belt Pitch Length for all possible belt sizes (i.e., between the smallest and largest length, inclusive). The SP belt type for my system is SPA, the belt pitch length I have selected is **2000 mm**, and therefore the Power Correction for Belt Pitch Length is **0.98**.

Power correction for angle of wrap

I have selected a small pulley diameter of **125 mm**, and a large pulley diameter of 400 mm, my selected centre distance is **571.11 mm**, and therefore the Power Correction for Arc of Contact is **0.93**.

(D-d)/C= (400-125)/571.11=0.482 $\theta = 180 - 2*arcsin((D-d)/2c) = 152.14$ degree

TABLE A12

Belt Design Summary

From all possible combinations of pulley and belt length, I have select particular combination that I think solves the design problem the best:

- 1. The size of the small pulley pitch diameter is **125 mm**.
- 2. The size of the large pulley pitch diameter is **400 mm**.
- 3. The pitch length of the belt is **2000 mm**.
- 4. The belt Power Rating per belt is **4.315 kW.**
- 5. The Power Increment per belt is **0.57 kW.**
- 6. Power Correction for Belt Pitch Length is **0.98**
- 7. The Power Correction for Arc of Contact is **0.93**
- 8. Therefore the total Power per Belt is **4.452 kW.**
- 9. The design power for my system is **19.5 kW.**
- 10. Therefore the total number of belts required is **5 belts.**

Pulley and Belt selection consideration:

the output rpm is set to be 459.4 rpm which has very small error 0.14% compare to desired output of 460 rpm. The belt length is set to 2000mm which should be easy to source. Compare to longer belt 2240mm or 2500 mm belts which also required 5 total number of belts, 2000 mm sits in a sweet spot where center distance is smaller (571mm) this allows the system be more compact.

Use stronger belt with higher power ratings (eg fiber reinforced belt) could reduce the amount of belt needed to a whole number. Otherwise customize the belt length to get different power correction factor and minimize the wasted power.

Pulley Catalogue Selection

5 Groove SPA

APPENDIX B

RECOMMENDED PRACTICE FOR TENSIONING BELT DRIVES DURING INSTALLATION AND CALCULATION OF THE RESULTANT FORCE **IMPOSED ON THE SHAFT**

(Informative)

B1 GENERAL

The high power ratings of wedge belts and V-belts necessitate the measurement of belt tensions with sufficient accuracy to prevent belt slip or overloaded bearings or to meet particularly arduous conditions. The following procedure is recommended for drives coming within the normal range for each belt section as defined in this Standard.

B2 ORIGINAL TENSIONING OF BELT

The length of the span should be measured in millimetres. At the centre of the span a force is to be applied with a spring scale in a direction perpendicular to the span, until the belt is deflected from the normal by an amount equal to-

- 0.02 mm for every millimetre of span length if the span length is 500 mm or less (see (a) Figure B1, Condition 1); or
- 0.01 mm for every millimetre of span length if the span length exceeds 500 mm (see (b) Figure B1, Condition 2).

For example, the deflection for a span of 1 m would be (1000×0.01) mm, i.e. 10 mm. The force required for this deflection should be noted and compared with the value of P given in Table B1.

In all cases, it is highly recommended that the pulley centres be fixed and that the larger pulley be then rotated at least four times before making the measurement. On a multiple belt drive, it is essential that a matched set of belts be used (see Clause 2.6) and the above procedure be carried out on each belt, the average value of these forces being compared with the specified values of P in Table B1.

The belt system I have designed satisfies Condition **2.** The largest value of "Required deflection force", P from table B1 of Appendix 1 AS2784 is **14 N**. The "Correction for centrifugal tension", K (calculated by the equation give in Appendix 1 of AS2784 is **106.678**.

K=MV $\text{^2}=0.123*29.45\text{^2}=106.678$

For the belt system I have designed:

The "Static hub load", Ws, is defined as the magnitude of the force that is exerted on the pulley by the belt system when the pulleys are NOT rotating. For the system I have designed, Ws is equal to 3397.07 **Newtons**. The "Dynamic hub load", Wr, is defined as the magnitude of the force that is exerted on the pulley by the belt system when the pulleys ARE rotating. For the system I have designed, Wr is equal to **2361.66 Newtons**.

Ws=2*5*25*14*sin(152.14/2)=3397.07 N

Wr=2*5(25*14-106.68)sin(152.14/2)=2231.66 N

B4 DETERMINATION OF STATIC LOAD ON BEARING DUE TO DRIVE BELT

The total static bearing loading imposed by the belts on the shaft is the vector sum of the tensions in the belts and it can be calculated with sufficient accuracy from the following equation:

$W_s = 2 n T_{\text{max}} \sin \left(\frac{\theta}{2} \right)$ where $W_{\rm s}$ total static bearing loading, in newto \overline{n} $=$ number of belts θ $=$ are of contact on smaller pulley, in $T_{\rm stat} \ \ \, =$ static belt tension, in newtons for Condition 1, $T_{\text{stat}} = 12.5 \times P$ for Condition 2, $T_{\rm{stat}} = 25 \times P$ where \boldsymbol{P} \sim the force applied at the centre of t B2, in newtons.

$\,$ B5 $\,$ DETERMINATION OF DYNAMIC LOAD ON BEARING DUE TO DRIVE $\,$ BELT

To determine the dynamic hub loading, a correction has to be made to the static tension to account for the effect of centrifugal force before the vectorial summation i.e.,

Bearing loading

Given that the shaft length is 1 meter, calculate the reaction forces on the bearing near the pulley (bearing 1) and the bearing at the far end of the shaft (bearing 2).

Q.17. i) Static Case
\n400 mm PD, L= 89 mm. 89+x=114 mm
\n
$$
m=24.8
$$
 kg
\n F_{α}
\n $F_{\$

$$
-243.29 + F_0 - 19.69 = 0
$$

$$
F_0 = 262.93 N
$$

$$
\Sigma_{Fx=0}
$$
 $\Sigma_{Fy=0}$, $-mg + F_{a} + F_{b}=0$
\n $\Sigma M_{a=0}$, 3397.07 x0.0695 + F_a x (1-0.114-0.025) =0
\n $F_{a} = -274.21 N$
\n $-3397.07 + F_{a}-274.21 = 0$
\n $F_{a}=3671.28 N$

$$
\therefore
$$
 For stat'c case at bearing A, reaction force
\n
$$
\Sigma_{F_B} = \sqrt{262.93^2 + 3671.28^2} = 3680.68
$$
 N
\nat bearing B. $\Sigma_{F_B} = \sqrt{(-19.69)^2 + (-219.21)^2} = 274.91$ N

ii) Running Case
\n400 mm PD, L = 89 mm. 89+x = 114 mm
\n
$$
m=24.8
$$
 kg
\n
\n10
\n $\frac{60.114 \text{ m} \rightarrow \frac{1}{16}}{6}$
\n $\frac{1}{10}$
\n $mg=24.24N$
\n $F_0 = -(9.64 N) , F_0 = 262.93 N$

$$
\therefore \text{For running case at bearing } A \text{ are reaction force}
$$
\n
$$
\Sigma F_B = \sqrt{262.93^2 + 2552.29^2} = 2565.80 \text{ N}
$$
\n
$$
at bearing B. \quad \overline{Z}F_B = \sqrt{(-19.69)^2 + (-190.63)^2} = 191.64 \text{ N}
$$

Bearing position

My large pulley has a width of **400 mm**. Bearing 1 is mounted **114 mm** from the start of my shaft. Bearing 2 is mounted **975mm** from the start of my shaft.

Bearing load rating

We will simplify our design by using the same bearing for both bearings at either end of the main shaft. This approach is quite common as it is much easier to implement and costs less to buy two bearings of the same type, rather than two specific bearings. It also helps the engineer to sleep well at night as they don't have to worry about whether the bearings are assembled the right way around.

But using the same bearing type for both ends of the main shaft means that we must design for the bearing that sees the greatest load (we will call this the worst case loaded bearing). At this stage of the design process, we can calculate the load rating required for our bearings, however we cannot select a bearing until we know the diameter of our shaft. As bearings come in standard bore sizes, we will manufacture our shaft to fit our bearings. Once we know the minimum diameter our shaft requires to resist loading, we will be able to select bearings with an appropriate bore size.

State the Static Load **3.681kN** and Dynamic **2.5658 kN** that you have calculated for the worst case loaded bearing. If we require an L10 design life or 7,000,000 cycles using a rolling element bearing $(k = 3.0)$, state the Static Load Rating 3.681 kN and Dynamic Load Rating **4.908 kN** required for the worst case loaded bearing.

$$
C^k = \frac{L_{10}}{E^6} * p^k
$$

 $Cdynamic = \sqrt[3]{7} * 2.5658 = 4.908kN$

Shaft design

The main shaft runs in one direction only (power applied) and is started once per day and used for a total of 20 hours per day. **Equation 2** from Table 2 of AS1403 (Design of Rotating Steel Shafts) is appropriate for this application.

Bending moment diagram

Free body diagram of the forces acting on the main shaft on the resultant plane and bending moment diagram for this shaft see below

21. Static case .
$$
WR = \sqrt{N_{s}^{2} + Mg^{2}} = \sqrt{3391.07^{2} + 248.87^{2}} = 3405.81/0.089m
$$

Q) resultant Plane

 $0.5 = 0.089 \times 3405.8 \times \frac{1}{2} = 151.56$ $82 = 0.025 \times 3405.8 = 85.145$ β 3 = 274.88 x(1 - 0.114 - 0.025) = 236.7 $Mq = 236.7 Nm$

Peak shaft torque

To calculate the shaft diameter, we require the maximum shaft torque, Tq. Assume that power is transmitted with 100% efficiency.

Trial shaft diameter:

From Appendix A from AS1403 (Design of Rotating Steel Shafts)the maximum bending moment, Mq is **236.7 Nm** and the maximum shaft torque, Tq is **405.36 Nm**. Therefore from Appendix A of AS1403, the estimated shaft diameter using low strength steel is **32 mm**.

APPENDIX A

'TRIAL' SHAFT DIAMETER

(Informative)

A 'trial' diameter may need to be assumed in Formulas 1 to 4 given in Table 2.

The 'trial' shaft diameter is to be read directly from Figure A1, which plots shaft diameter against equivalent torque (T_E) , where

FIGURE A1 'TRIAL' SHAFT DIAMETER

StressRaising Factors

The shaft we are designing will have stress raising factors associated with the components we are mounting to it. We will be fitting a rolling element bearing to the shaft, and we will also design the shaft to have the pulley mounted using a keyway.

Determine the following stress raising factors for your trial diameter using low strength steel:

- Size Factor
- Fitted Rolling Element Bearing with K8/k6 Transition fit.
- Keyed Component with a side milled keyway with a H7/k6 transition fit.

The size factor for my trial diameter is **1.27**. The stress raising factor for a fitted rolling element bearing is **1.45**. The stress raising factor for a keyway is **1.4**.

Resolving Stress Raising Factors

According to section 8.2 of AS1403, the stress raising factors (K) must be resolved in to one value. The keyway will be side-milled into the end of the shaft, and run the width of the pulley. Based off the location of the bearing and the keyway on the shaft determine the resolved stress raising factor.

The width of my pulley is **89mm**, and the bearing is located **25 mm** from the pulley end of my shaft. Therefore, the two stress raising factors are separated by an axial distance of **25 D**. Therefore clause **b** applies, and the resolved stress raising factor is **1.45**.

ed for fits between K8/k6 and K8/g6 which are re ay be inte ed by the bearing es, see AS 1654

FIGURE 5 STRESS-RAISING FACTOR K FOR SHAFT FITTED WITH ROLLING ELEMENT BEARING

K value due to keyway: The keyway is side-milled with a component fit H7/s6:

Minimum shaft diameter

Using the equation found in question 19, and the loads applied to the shaft, as well as an initial trial diameter, we can determine the minimum possible diameter for the shaft use following process:

$$
\left(Q Lb. \qquad D^3 = \frac{10^4 F_s}{F_R} \sqrt{\left[K_s K \left(Mq + \frac{P_q D}{g_{000}}\right)\right]^2 + \frac{3}{4} T_q^2}
$$

The value of Fs is 2.0 for Formula 1 and 1.2 for Formulas 2, 3 and 4. Where severe injury, death or extensive equipment damage is likely to occur because of the failure of the shaft, higher factors of safety may be used.

$$
F_{S} = 1.2, F_{R} = 193 MPa, P_{\phi} = 0, M_{\phi} = 236.7 Nm. T_{\phi} = 405.36 Nm
$$
\n
$$
D^{3} = \frac{10^{4} \times 1.2}{195} \sqrt{[1.27 \times 1.4 (236.7)]^{2} + \frac{3}{4} \times (405.36)^{2}}
$$
\n
$$
D = 32.42 mm
$$
\n
$$
\frac{32.4-32}{0.01 \times 3.44} = 1.295 \times 1
$$
\nTrial

\n
$$
T_{rad} = 33
$$
\n
$$
T_{rad} = 33
$$
\n
$$
T_{rad} = 34
$$
\n
$$
T_{rad} = 34
$$
\n
$$
T_{rad} = 1.61 \times 1.3
$$
\n
$$
T_{rad} = 1.61 \times 1.295
$$
\n
$$
T_{rad} = 0.61 \times 1.295
$$
\n
$$
T_{rad} = 0.61 \times 1.295
$$
\nUnder the diameter (32.42 mm)

As a result the minimum possible shaft diameter is **32.42mm**

Bearing Catalogue Selection

Using the Timken deep groove ball bearing catalogue provided in the reference material, select a bearing which can service the worst case static and dynamic load rating calculated within question 17.

Ensure that the internal diameter of the bearing is greater than the minimum required shaft diameter calculated in question 22 and specify the final shaft diameter to the internal diameter of the bearing.

Bearing Catalogue Selection

For my design scenario, the selected bearing has a dynamic load rating of **15.9 kN** and a static load rating of **10.30 kN**. The final shaft diameter has been specified to **35mm**, the internal diameter of the bearings selected.

Keyway Cross-Section

Now that we know what the diameter of our shaft will be, we can design the keyway. Using material from SAA HB6 determine the nominal dimensions b and h for a normal fitting metric keyway for your diameter shaft.

The shaft I have designed is **35 mm** in diameter. Therefore, the nominal dimension b for the keyway is **10 mm**, and h is **8 mm**.

Keyway Tolerancing

The tolerance required for the width of the keyway in the shaft is **+0.000 mm** and **– 0.036mm.** For the depth the tolerance is $+$ **0.2mm** and $-$ **0.0 mm.**

Key Length

Given the diameter of the shaft, and the torque being transmitted, determine the length the key must be if the key is made from A151 1020 cold drawn steel (Syt = 352MPa) and has a factor of safety of 2 with regards to shear, and 1.5 with regards to crushing.

$$
\overline{\varphi} = 405.3b \text{ Nm} \cdot \text{For shear,}
$$
\n
$$
P_{key} = \frac{\overline{v}}{r} = \frac{2\overline{v}}{D} = \frac{2 \times 405.3b}{0.035} = 23(b3.43 \text{ N})
$$
\n
$$
T_{os} = \frac{S_{material}}{S_{design}} = \frac{S_{y\text{t}}}{\overline{v}} = 2
$$
\n
$$
P_{max} = \frac{\frac{ly\text{t}}{S}}{\overline{r}_{os}} = \frac{352 \times \frac{1}{2}}{2} = 88 \text{ MPa}
$$
\n
$$
V_{max} = \frac{P_{key}}{bl} \qquad b = 0.01 \text{ m}
$$
\n
$$
L = \frac{P_{key}}{b \text{ T}_{max}} = \frac{23(b3.43}{0.01 \times 88 \times 10^{6}} = 0.02632 \text{ m}
$$

For crush
\n
$$
S_{key} = S_{yt} = 352MPa
$$
\n
$$
S_{shatt} = 390 \times 0.65 = 253.5MPa
$$
\n
$$
S_{shatt} \leq S_{key} \qquad \delta_{max} = \frac{S_{shatt}}{F_{os}} = \frac{253.5}{1.5} = 169 MPa
$$
\n
$$
B_{max} = \frac{P_{key}}{P_{ph}} = \frac{2P_{key}}{B_{max}h} = \frac{2 \times 23(63.43)}{(67 \times 10^{-6} \times 8 \times 10^{-6})} = 0.03427 \text{ m}
$$
\n
$$
= 34.27 \text{ mm}
$$
\n
$$
= 34.27 \text{ mm}
$$

The keyway I have designed must have a length of **34.27 mm** to resist both shearing and crushing.

Gear design torque increase

Sometime after the pulley and belt system has been commissioned the end-user decides to repurpose the conveyor for another application that requires the output torque to be increased by 60%.

Spur gear minimum module

A single-stage spur gear reduction could be used to achieve this torque increase. I am advised to begin my design with 21 teeth on the pinion, but with a pinion pitch diameter of no less than 2.5 times your shaft diameter.

* The value in parenthesis is not recommended.

Given that my shaft diameter is 35 mm, according to AS2938, the smallest 1st choice normal module that can accommodate 21 teeth on the pinion with a pinion pitch diameter of no less than 2.5 times the shaft diameter is **5 mm**.

Gear specification

A torque increase of 60 % is required and I have selected a module of 5mm for my design. For 21 teeth on the pinion, the number of teeth on the mating gear that most closely achieves this required torque increase, while maintaining a hunting tooth ratio, is **34 teeth.** For this number of teeth on the mating gear, and the module I have selected, the gear pitch dimeter will be **170 mm** and according to the standard tooth profile of AS2938, the addendum diameter of the mating gear will be **180 mm** and the dedendum diameter of the mating gear will be **157.5 mm.**

\n
$$
\frac{1}{\Phi} \frac{Output}{Input} = \frac{N \text{ gear}}{N \text{ photon}} = 1 + 0.6
$$
\n

\n\n
$$
\frac{N \text{ gear}}{N \text{ gear}} = 1.6 \times 21 = 33.6
$$
\n

\n\n
$$
N \text{ gear} = 5 \times 34 = 170 \text{ mm}
$$
\n

\n\n
$$
\text{Addendum} = |x \text{ m} = 5 \text{ mm}
$$
\n

\n\n
$$
\text{Dedendum} = |x \text{ m} = 5 \text{ mm}
$$
\n

\n\n
$$
\text{Dedendum} = |x \text{ m} = 5 \text{ mm}
$$
\n

\n\n
$$
\text{Dedendum} = 1.25 \times m = 6.25 \text{ mm}
$$
\n

\n\n
$$
\text{Dedendum} = 170 + 2 \times 5 = 180 \text{ mm}
$$
\n

\n\n
$$
\text{Dedendum} = 170 - 2 \times 6.25 = 157.5 \text{ mm}
$$
\n

\n\n
$$
\text{Croot} = 170.6 \text{ mm}
$$
\n

Gear design

Assumptions:

• Geometry factor J is calculated from the following chart assuming a 20 degree pressure angle and "load applied at tip of tooth, (no sharing)".

• The velocity factor (Kv) is calculated from the following chart assuming that our design is based on line "C" for "precision shaved and ground" teeth.

Vt=2*pi*(1470/60)*(0.105/2)=8.082 m/s

Based on the number of teeth on my pinion 21, the Geometry Factor (found from the table below, based on the above assumptions) is **0.24**. For a pinion shaft speed of 1470 RPM, and pinion pitch circle diameter 105 mm, the pitch line velocity is **8.082** meters per second, and the Velocity factor, Kv, (found from the table below based on the above assumptions) is **1.8**.

Gear face width

Summaries of the gear selection The Geometry factor, J, found in the previous question is 0.24. The Velocity factor, Kv, found in the previous question is 1.8. The module for my pinion is 5 mm.

For the following assumptions:

• The mounting factor (Km) is assumed to be 1.4 (this a common assumption for initial design purposes)

- The overload factor (Ko) is assumed to be 1.5 (again this is a common assumption)
- The gears are made of 4340 normalised steel with bending strength (St) of 474 MPa

Motor power 15 kW

\nDesign power 19.5 kW

\n
$$
F_{t} = \frac{W}{V} = \frac{19.5 \times 10^{3}}{8.082} = 2412.8N
$$
\n
$$
B_{t} = S_{t} = 474 M\text{Pa}
$$
\n
$$
b = \frac{F_{t} \cdot k_{v}k_{o}k_{m}}{8.081} = \frac{2412.8 \times 1.8 \times 1.5 \times 1.4}{414 \times 10^{6} \times 0.005 \times 0.24} = 0.01603 m
$$
\n
$$
= 16.03 mm
$$

Using the AGMA method and the assumptions above, the minimum required face width, b, for the pinion is: **16.03 mm.**

Module Selection

The module should allow pinion pitch diameter greater than 2.5 times my shaft diameter(35mm). The 1st choice common module (5mm) is chosen for easier sourcing or manufacturing of parts. The torque increase should be just greater than 60% and the tooth breadth should kept small to reduce the gear weight thus reduce the cost.

Gear design worksheet

Detailed Drawings for Gear and Shaft

D

E

F

1 2 3 4 5 6 7 7

D

E

F

 $\overline{2/2}$

Reference List

1.Standards Australia. (2007). Belt Drives (AS 2784–2007). Sydney, Australia: Standards Australia.

2.Standards Australia. (2004). Design of Rotating Steel Shafts (AS 1403–2004). Sydney, Australia: Standards Australia.

3.Standards Australia. (1999). SAA HB6–1999: Standards Australia Handbook—Design of Machine Elements. Sydney, Australia: Standards Australia.